博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
elasticsearch 查询(match和term)
阅读量:6715 次
发布时间:2019-06-25

本文共 3006 字,大约阅读时间需要 10 分钟。

elasticsearch 查询(match和term)

es中的查询请求有两种方式,一种是简易版的查询,另外一种是使用JSON完整的请求体,叫做结构化查询(DSL)。

由于DSL查询更为直观也更为简易,所以大都使用这种方式。
DSL查询是POST过去一个json,由于post的请求是json格式的,所以存在很多灵活性,也有很多形式。
这里有一个地方注意的是官方文档里面给的例子的json结构只是一部分,并不是可以直接黏贴复制进去使用的。一般要在外面加个query为key的机构。

match

最简单的一个match例子:

查询和"我的宝马多少马力"这个查询语句匹配的文档。

{  "query": {    "match": {        "content" : {            "query" : "我的宝马多少马力"        }    }  }}

上面的查询匹配就会进行分词,比如"宝马多少马力"会被分词为"宝马 多少 马力", 所有有关"宝马 多少 马力", 那么所有包含这三个词中的一个或多个的文档就会被搜索出来。

并且根据lucene的评分机制(TF/IDF)来进行评分。

match_phrase

比如上面一个例子,一个文档"我的保时捷马力不错"也会被搜索出来,那么想要精确匹配所有同时包含"宝马 多少 马力"的文档怎么做?就要使用 match_phrase 了

{  "query": {    "match_phrase": {        "content" : {            "query" : "我的宝马多少马力"        }    }  }}

完全匹配可能比较严,我们会希望有个可调节因子,少匹配一个也满足,那就需要使用到slop。

{  "query": {    "match_phrase": {        "content" : {            "query" : "我的宝马多少马力",            "slop" : 1        }    }  }}

multi_match

如果我们希望两个字段进行匹配,其中一个字段有这个文档就满足的话,使用multi_match

{  "query": {    "multi_match": {        "query" : "我的宝马多少马力",        "fields" : ["title", "content"]    }  }}

但是multi_match就涉及到匹配评分的问题了。

我们希望完全匹配的文档占的评分比较高,则需要使用best_fields

{  "query": {    "multi_match": {      "query": "我的宝马发动机多少",      "type": "best_fields",      "fields": [        "tag",        "content"      ],      "tie_breaker": 0.3    }  }}

意思就是完全匹配"宝马 发动机"的文档评分会比较靠前,如果只匹配宝马的文档评分乘以0.3的系数

我们希望越多字段匹配的文档评分越高,就要使用most_fields

{  "query": {    "multi_match": {      "query": "我的宝马发动机多少",      "type": "most_fields",      "fields": [        "tag",        "content"      ]    }  }}

我们会希望这个词条的分词词汇是分配到不同字段中的,那么就使用cross_fields

{  "query": {    "multi_match": {      "query": "我的宝马发动机多少",      "type": "cross_fields",      "fields": [        "tag",        "content"      ]    }  }}

term

term是代表完全匹配,即不进行分词器分析,文档中必须包含整个搜索的词汇

{  "query": {    "term": {      "content": "汽车保养"    }  }}

查出的所有文档都包含"汽车保养"这个词组的词汇。

使用term要确定的是这个字段是否“被分析”(analyzed),默认的字符串是被分析的。

拿官网上的例子举例:

mapping是这样的:

PUT my_index{  "mappings": {    "my_type": {      "properties": {        "full_text": {          "type":  "string"        },        "exact_value": {          "type":  "string",          "index": "not_analyzed"        }      }    }  }}PUT my_index/my_type/1{  "full_text":   "Quick Foxes!",  "exact_value": "Quick Foxes!"  }

其中的full_text是被分析过的,所以full_text的索引中存的就是[quick, foxes],而extra_value中存的是[Quick Foxes!]。

那下面的几个请求:

GET my_index/my_type/_search{  "query": {    "term": {      "exact_value": "Quick Foxes!"    }  }}

请求的出数据,因为完全匹配

GET my_index/my_type/_search{  "query": {    "term": {      "full_text": "Quick Foxes!"    }  }}

请求不出数据的,因为full_text分词后的结果中没有[Quick Foxes!]这个分词。

bool联合查询: must,should,must_not

如果我们想要请求"content中带宝马,但是tag中不带宝马"这样类似的需求,就需要用到bool联合查询。

联合查询就会使用到must,should,must_not三种关键词。

这三个可以这么理解

  • must: 文档必须完全匹配条件
  • should: should下面会带一个以上的条件,至少满足一个条件,这个文档就符合should
  • must_not: 文档必须不匹配条件

比如上面那个需求:

{  "query": {    "bool": {      "must": {        "term": {          "content": "宝马"        }      },      "must_not": {        "term": {          "tags": "宝马"        }      }    }  }}

转载地址:http://qvkmo.baihongyu.com/

你可能感兴趣的文章
jQuery(一)引入
查看>>
Facebook内部分享:26个高效工作的小技巧
查看>>
jstack和线程dump分析
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
SQL批量更新数据库中所有用户数据表中字段类型为tinyint为int
查看>>
第一次使用Android Studio时你应该知道的一切配置(二):新建一个属于自己的工程并安装Genymotion模拟器...
查看>>
AtomicInteger简介
查看>>
(转)解决ScrollView嵌套ListView或者GridView导致只显示一行的方法
查看>>
html5 -- audio标签
查看>>
DNG格式解析
查看>>
Windows 下搭建LDAP服务器
查看>>
2015年第8本(英文第7本):the city of ember 微光城市
查看>>
FZU操作系统课程实验 实验一
查看>>
【转】Android Activity和Intent机制学习笔记----不错
查看>>
Eclipse背景颜色修改
查看>>
linux下安装oracle11g 64位最简客户端(转)
查看>>
搭建XMPP协议,实现自主推送消息到手机
查看>>
基于FPGA的图像处理(二)--System Generator入门
查看>>
DIV+CSS 入门
查看>>
UVa 213 Message Decoding(World Finals1991,串)
查看>>